top of page

08/02/2019 – Science & Technology / Innovation / ‘Speed-breeding’ / NASA

The need for speed


First used by NASA to grow plants extra-terrestrially, so-called ‘speed breeding’ is fast-tracking improvements in a range of crops, thanks to recent advances made in the UK and Australia. The scientists involved in this new research believe the technology could hold the key to our future food security.


Scientists at the John Innes Centre, Earlham Institute, and Quadram Institute in Norwich in the UK, together with a team of researchers at the University of Queensland, Australia, have recently made significant improvements to the technique known as ‘speed breeding’, having adapted it to work both in vast glasshouses and in scaled-down desktop growth chambers.


The ability to function at such scales offers scientists greater opportunities than ever before to breed disease-resistant, climate-resilient, nutritious crops that can feed a growing global population, suggests the research – published in the peer-reviewed journal ‘Nature Protocols’.


Fast-track to genetic advancement


Speed breeding uses enhanced LED lighting and day-long regimes of up to 22 hours to optimise photosynthesis and promote the rapid growth of crops. Put simply, it speeds up the breeding cycle of plants – and significantly so.

By shortening breeding cycles, the method allows scientists and plant breeders to fast-track genetic improvements such as yield gain, disease resistance and climate resilience in a range of crops such as wheat, barley, oilseed rape and pea. Being able to do so in a compact, desktop chamber enables affordable, cutting-edge research on a range of crops to take place before the experiments are scaled up to larger glasshouses.


A crucial time for Europe


The latest advancements come at a crucial time for European crop development. They follow a decision last year by the Court of Justice of the European Union, which ruled that crops improved using modern gene-editing techniques should be classed as genetically modified organisms.


The decision was greeted with dismay among many leading plant scientists, breeders and farming industry leaders, who view it as frustrating efforts to meet the challenge of a growing world population.


And Dr Brande Wulff – a wheat scientist at the John Innes Centre and one of the lead authors on the paper – explains that European crop research and breeding will become more dependent on speed breeding in light of such developments. “Speed breeding allows researchers to rapidly mobilise the genetic variation found in wild relatives of crops and introduce it into elite varieties that can be grown by farmers. The EU ruling that heavily regulates gene editing means we are more reliant on speed breeding to grow sturdier, more resilient crops.”


Dr Wulff’s team at the John Innes Centre has developed techniques such as rapid gene discovery and cloning that, alongside speed breeding, would allow crop improvements via a non-GM route.

Collaborators in Australia – a country that has just come out of one of the worst droughts on record – are using the technology to rapidly cycle genetic improvements to make crops more resilient to prolonged dry and hot weather.


Pathway for accelerating crop research


Dr Wulff predicts that speed breeding technology will become the norm in research institutes: “We know that more and more institutes across the world will be adopting this technology, and by sharing these protocols we are providing a pathway for accelerating crop research,” he advises.


The refinements, outlined in the recently released study, aim to optimise the technology as a research tool. Changes to soil/media composition, lighting, temperature, spacing of plants and premature seed harvest have led to the team cutting down the seed-to-seed generation time in wheat to just eight weeks.

Remarkably, this means the speed breeding technology allows six generations of wheat to be grown per year, compared to two generations using traditional breeding methods. 


Accessible and democratic technology


Sreya Ghosh – first author on the paper and also based at the John Innes Centre – highlights the benefit of making the technology accessible to more research communities. “A lot of researchers want to speed up their crop breeding but do not have access to state-of-the-art growth chambers or large glasshouses. It was important to us that we develop something that could be bought quickly and set up with minimum skill.


“This scaled down growth cabinet means the technology is accessible and democratic,” she continues. “Researchers all over the world can set it up on their desk to get the benefits of speed breeding for their research programme.”


Scientific computing specialist and co-author on the paper, Luis Yanes, from the UK’s Earlham Institute, adds that the researchers have developed open-access technologies, meaning any other researchers or member of the public can use it to build their own speed-breeding chamber. “This is a great example of how collaboration of expertise between institutions can lead to world-class, innovative research that makes an impact to the agri-industry and the consumer,” he enthuses.


Generation time in most plant species represents a bottleneck in applied research programmes and in breeding. Tackling this bottleneck means scientists can respond quicker to emerging diseases, changing climate and increased demand for certain traits. As such, expect to see the swift spread of ‘speed breeding’ as an effective tool to help overcome the evolving challenges the agri sector will inevitably face in the years ahead.


The full paper – ‘Speed breeding in growth chambers and glasshouses for crop breeding and model plant research’ – can be accessed here:

Latest issue – Vol 1/23
– Health & Nutrition focus
– Gulfood 2023 Special
– Next level legume – The rise of the chickpea
  • Twitter Social Icon
  • Facebook Social Icon

Interpack 2023



Milan, Italy

The Hotel & Hospitality Show 2023

Sandton Convention Centre, South Africa

bottom of page